

Falling Objects

- When an object falls freely, it accelerates
- This acceleration is due to gravitational force
- The amount of acceleration, g, varies with height above the surface of the earth

 Although not enough to really notice
 - ~9.82 ms⁻² (sea level) to ~9.79 ms⁻² (Mt. Everest)
- For our purposes, *g* = 9.81 ms⁻² down

What happens when a ball is thrown straight up in the air?

- On its way up, the ball slows down
 - The acceleration due to gravity is in the opposite direction of the velocity of the ball
 Ball is going up, gravity is pulling down
- On its way down, the ball speeds up
 - The acceleration due to gravity is in the same direction as the velocity of the ball
 - Ball is going down, gravity is pulling down

- That means that the acceleration due to gravity is always down
 - We probably already suspected that
- But, what happens to the ball at the very top of its path?
 - It stops
- What is the acceleration at that point?
 - It is still the acceleration due to gravity and it is still down
 - However, rather than changing the speed of the ball, the gravitational acceleration is causing a change in direction

Air Resistance

- All objects in a vacuum fall with the same rate of acceleration regardless of mass
- We see different rates because of air resistance
 - The air pushes up on the object slowing it down
- If we remove the effect of air resistance then the objects will fall at the same rate

Terminal Velocity

- When a object falls the air is compressed under it and pushes up against the object
- At some point, the force of the air is equal to the force of gravity
- The object will continue to fall but will no longer accelerate
- This maximum velocity is called terminal velocity
- The terminal velocity depends on the surface area and mass of the object and the density of air