(Question B1 continued)

Part 2 Radioactivity and nuclear energy levels

- (a) Define the following terms.
 - (i) Radioactive half-life (T1) [1]

 Lime, I take for half of the nuclei

 to decay (transmutate)
 - (ii) Decay constant (λ) [1]

 The probability that a hucleus will decay

 in unit time
- (b) Deduce that the relationship between T_{\perp} and λ is [2]
 - $N = N_0 e^{-\lambda t}$ $N = N_0 e^{-\lambda t}$ $N = N_0 = T_{1/2}$ $N = N_0 = T_{1/2}$

 $\ln Z = \chi T$ ΔED . (This question continues on the following page)

(Question B1, part 2 continued)

Thorium-227 (Th-227) undergoes a-decay with a half-life of 18 days to form radium-223 (Ra-223). A sample of Th-227 has an initial activity of 3.2×10^5 Bq.

(c)	Dete	ermine, the activity of the remaining thorium after 50 days.	[2]
		$\lambda = l_0 = 4.46 \times 10^{-7} \text{ s}^{-1}$ $18(24)(3600)$	
		R=Roe-At = (8.2×10 8,) exp(-4,46×10-75-1/50)(2)	4)(3600)
In th	e dec	ay of a Th-227 nucleus, a γ -ray photon is also emitted.	
(d)	(i)	Use the following data to deduce that the energy of the γ -ray photon is 0.667 MeV.	[3]
		mass of Th-227 nucleus = 227.0278 u mass of Ra-223 nucleus = 223.0186 u mass of helium nucleus = 4.0026 u energy of α -particle emitted = 5.481 MeV unified atomic mass unit (u) = $931.5 \text{ MeV} \text{ c}^{-2}$	
		You may assume that the Th-227 nucleus is stationary before decay and that the Ra-223 nucleus has negligible kinetic energy.	
	*	227.02784 - (223.01860+ 4.00264) = 0.00664 (931.5 MeVc-2) = 6.1479 MeVc-2 - 5.481 MeV	
		= 0,667 MeV	
	(ii)	Calculate the frequency of the γ -ray photon.	[3]

(This question continues on the following page)

(Question B1, part 2 continued)

Although in the decay of a Th-227 nucleus, an α -particle and a γ -ray photon are emitted, they may have different energies to those in (d) (i). However, all the α -particles emitted in the decay of Th-227 have discrete energies as do the associated γ -ray photons. This provides evidence for the existence of nuclear energy levels. The diagram below represents some of the energy levels of a nucleus of Ra-223 relative to Th-227.

- (e) On the diagram above label
 - (i) the arrows associated with α -particles (with the letter A).
 - (ii) the arrows associated with γ -ray photons (with the letter G).
 - (iii) the ground state energy level of Ra-223 (with the letter R). [1]
- (f) Use data from (d), to suggest a value for the energy difference between the ground states of a nucleus of Th-227 and the ground state of a nucleus of Ra-223. [1]

6.148 MeV