	_
Particle Interactions	
	<u> </u>
]
Heisenberg Uncertainty Principle	
According to Heisenberg, measurements	
of the energy of a particle or of an energy level are subject to an uncertainty	
 This uncertainty is not the result of random or systematic errors but result because of 	
a law of natureThe very process of measurement	
necessarily creates an uncertainty in the quantities being measured	
quantition boiling moderate	
There is, however, a subtler and (for our	
purposes) more useful, interpretation of the energy-time Heisenberg uncertainty	
principleWe know that total energy is always	
conserved	
Suppose that in a certain process energy conservation is violated	
 For example, assume that in a certain collision the total energy after the collision 	
is larger than the energy before the collision by an amount ΔE	

- The Heisenberg uncertainty principle claims that this is in fact possible!!!
 - Provided the process does not last longer than a time interval given by

$$\Delta t \approx \frac{h}{4\pi\Delta E}$$

 In other words, energy conservation can be violated provided the time it takes for that to happen is not too long

Virtual Particles

- Let us consider the possibility of a free electron emitting a photon
- This process actually violates the law of conservation of energy
- It cannot take place unless the photon that is emitted is very quickly absorbed by something else so that the energy violation (and the photon) becomes undetectable

- Because this photon violates energy conservation, it is called a virtual photon
- This process is impossible according to classical physics but is possible within quantum theory
- This process is represented by the following diagram (called a Feynman diagram)

electron

electron

• Consider the following diagram:

- Because the first electron emitted a photon, it changed direction a bit to conserve momentum
- Similarly, the second electron also changed direction, since it absorbed a photon
- Looked at from a large distance away, the change in direction of the two electrons can be interpreted as the result of a force or interactions between the two electrons
 - Repelling forces due to Coulomb's law
- The particle physics view is that Coulomb's law (electromagnetic force) is the exchange of a virtual photon between the electrons
 - The exchanged photon is not observable

Basic Interactions

Interaction	Interaction acts on	Exchange particle(s)	Relative strength
Electromagnetic	Particles with electric charge	Photon	137 ⁻¹
Weak	Quarks and leptons only	W and Z bosons	10 ⁻⁶
Strong (color)	Quarks only	Gluons	1
Gravitational	Particles with mass	Graviton	10 ⁻³⁸

- Since the early 1970s the electromagnetic and weak nuclear interactions have been shown to be two faces of the same interaction
 - Electroweak interaction
- So there are really three fundamental interactions:
 - The electroweak interaction
 - The strong (color) interaction
 - The gravitational interaction

Some Interaction Vertices

Feynman Diagrams

- Feynman diagrams can be used to calculate the probability of a process actually taking place
- The vertices in the diagram represent a definite mathematical expression called the *amplitude* of the process
- The square of the amplitude gives the probability of the process actually taking place

- A value called the *strength of the interaction* is applied to each vertex
- For the electromagnetic interaction, the basic vertex is assigned the value

$$\sqrt{\alpha_{EM}}$$
 where $\alpha_{EM} \approx \frac{1}{137}$

• The amplitude of the diagram is the product of the values for each vertex

Example

 This process has two interaction vertices, so the amplitude of the diagram is proportional to

$$\sqrt{\alpha_{\scriptscriptstyle EM}} \times \sqrt{\alpha_{\scriptscriptstyle EM}} = \alpha_{\scriptscriptstyle EM}$$

Example

 All of these processes have four interaction vertices, so the amplitude for these is proportional to

$$\sqrt{\alpha_{\scriptscriptstyle EM}} \times \sqrt{\alpha_{\scriptscriptstyle EM}} \times \sqrt{\alpha_{\scriptscriptstyle EM}} \times \sqrt{\alpha_{\scriptscriptstyle EM}} = \alpha_{\scriptscriptstyle EM}^2$$

Building Feynman Diagrams

- Using the basic interaction vertex for the electromagnetic interaction, we can build up complicated processes
- All we need are the following ingredients:
 - The basic interaction vertex
 - Lines with arrows to represent electrons and positrons
 - Wavy lines to represent photons

Example

• Photon scattering off another photon

Amplitude = α_{EM}^2

Weak Interaction

Weak interactions involve the W and Z bosons along with two fermions

Strong (color) Interaction

- Strong (color) interaction is complex
- One vertex is similar to the electromagnetic interaction
 - Except that it involves quarks and gluons

Example

• A red u quark becomes a blue u quark

Range of Interaction

• Consider the following interaction in which two particles interact by the exchange of some particle with mass *m*

- The fastest that the virtual particle can travel is the speed of light, *c*
- The time to reach the other particle will be $\frac{R}{c}$
- The energy exchanged will be $\it mc^2$
- Taking the uncertainties to be of the order of the values we have by the Heisenberg uncertainty principle

$$mc^2 \times \frac{R}{c} \approx \frac{h}{4\pi}$$

$$R \approx \frac{h}{4\pi mc}$$

- This explains why the electromagnetic force has an infinite range
 - Mass of photon is zero, therefore the range is infinite
- This also explains why the weak reaction has a short range
 - W and Z bosons have a large mass
 - W has a mass of about 80 GeVc-2