- Ecosystem All the organisms in an area that interact with each other and with their environment of energy and matter. - Sunlight is captured by green plants during photosynthesis and stored as chemical energy. - The energy passes through the ecosystem from species to species when herbivores eat plants and carnivores eat herbivores. - These interactions form food chains. - All organisms in an ecosystem have a specific role or trophic level: - Producer convert radiant energy into chemical energy for ecosystems (green plants) - Primary consumers animals that eat plants (herbivores) - Secondary consumers animals that eat other animals (carnivores) ## The Carbon Cycle - In the carbon cycle, carbon and oxygen move back and forth between living things and their surrounding environment. - · Consists of two processes: - Photosynthesis - Cellular Respiration ## Photosynthesis - · Occurs in all plants - Converts carbon dioxide and water to carbohydrates (sugar) and oxygen - 6CO $_2$ +6 H $_2$ O + energy \rightarrow C $_6$ H $_{12}$ O $_6$ + 6O $_2$ ## Cellular Respiration - Converts oxygen to carbon dioxide - Carried out by all living cells - $6O_2 + C_6H_{12}O_6 \rightarrow 6CO_2 + 6H_2O + energy$ ### Nitrogen Fixation - Plants use Nitrogen (N), Phosphorus (P), and potassium (K) for growth. - These elements are found in plant fertilizer. - How do plants get Nitrogen if they are not given fertilizer? - From the atmosphere. - The Earth's atmosphere is 80% Nitrogen - But.... - Most plants cannot absorb nitrogen directly from the air. - The nitrogen must first be "fixed": - Pulled from the air and bonded to other elements to make new compounds - This process is called nitrogen fixation. - For example, nitrogen can combine with hydrogen to form ammonium (NH₄⁺) or oxygen to form nitrate (NO₃⁻) | Plants absorb the nitrogen compounds through their roots Animals can obtain nitrogen only by eating plants or other animals. | | |--|--| | In nature, the job of nitrogen fixation is carried out by a few species of nitrogen-fixing bacteria. Rhizobia (most important) Live in the nodules (rounded swellings) on the roots of legumes (peas, beans, alfalfa, clover) Before the development of artificial fertilizers, farmers planted legumes in their fields to help restore the fertility of the soil | | | Once Nitrogen has been fixed it enters the soil and water where it becomes available for living organisms to use. Nitrogen compounds that enter plants move through food chains and return to the soil and water through dead organisms and waste materials These compounds can re-enter plants without being converted to Nitrogen gas. | | In an aquatic ecosystem nitrogen fixation is carried out by cyanobacteria, also known as blue-green algae. # **Nitrification** • Decomposers, such as bacteria, break down the waste and dead materials producing ammonia. • Ammonia is used directly by some plants as a source of nitrogen. • Ammonia is also converted into nitrates by nitrifying bacteria in a process called nitrification. • The nitrates in the soil or water may be converted back into nitrogen gas by denitrifying bacteria. • This process is called denitrification. Disturbing the Cycles • What factors may disturb these biogeochemical cycles? - Overuse of fertilizers and herbicides - Combustion of fossil fuels - Deforestation - Volcanic activity - Fire - Human and animal waste mismanagement ### Bioaccumulation increase in concentration of a pollutant from the environment to the first organism in a food chain ## Biomagnification • increase in concentration of a pollutant from one link in a food chain to another | For bioaccumulation and biomagnification to occur, the pollutant must be: | | |--|---| | • | | | Long-lived If it is short-lived it will break down before it can become | | | If it is snort-lived it will break down before it can become dangerous | | | - Mobile | | | If it is not mobile then it will only stay in one place | | | - Soluble in fats | | | This way it is absorbed and retained by animals | | | Biologically active | | | It affects biological organisms | | | • It arrects biological organisms | | | | - |] | | DDT | | | (dichloro, diphenyl trichloroethane) | | | | | | DDT has a "half-life" of 15 years | | | If there is 100kg, then after 15 years 50kg remains | | | - After 30 years 25kg remains | | | - After 90 years 1.56kg remains | | | Since DDT bioaccumulates and biomultiplies, | | | then much of the DDT will be in the bodies of | | | organisms | | | DDT has low toxicity in humans, but kills insects | | | • DD I has low toxiony in humans, but kins insects | Other Substances that can | | | Biomagnify | | | | | | PCBs (polychlorinated biphenyls) | | | - Uses: | | | insulators in transformers | | | • plasticizer | | | fire retardant | | | - Problems: | | | • biomagnifies | | | impairs reproduction | | • widespread in aquatic systems | PAH (polynuclear aromatic hydrocarbons) Uses: component of petroleum products Problems: possible carcinogen | | | |---|--|--| | | | | | Heavy metals (mercury, copper, cadmium, chromium, lead, nickel, zinc, tin) Uses: mercury from gold mining many from metal processing Problems: may affect nervous system may affect reproduction | | | | | | | | Cyanide Uses: I leaching gold from ore Problems: toxic | | | | | | | #### Selenium - Uses: - concentrated by farming desert soils - Problems: - reproductive failures - toxic ## Population Size - Population can increase due to: - Natality - Offspring added to population - Immigration - Individuals moving into the area - Population can decrease due to: - Mortality - Individual dies (eaten, sickness, old age) - Emmigration - Individuals moving out of the area ## Population Growth - Population growth goes through three phases: - Exponential - \bullet Quick growing when there are very few limiting factors - Plants germinating in spring - Transitional - Slowing of growth rate as the population approaches the carrying capacity - Population plateau - The population remains constant or stable - Note: the plateau may have variations year to year around an average value # **Carrying Capacity** • The largest population of a species that an environment can support is called the carrying capacity. • Four main factors affect carrying capacity: Materials and energy - Food chains - Competition - Density Materials and Energy • All populations of organisms are ultimately limited by amount of usable energy from the sun, as well as the supply of water, carbon, and other essential materials. **Food Chains** • The population size at any trophic level is limited by the population (or biomass) in all the levels below it. • Populations are limited by food. trophic levels above them. • Populations are also limited by organisms in the Animal populations are limited by predators.Plant populations are limited by herbivoires. # Competition - Each organism has the same needs as other organisms. - Food, water, mates, space - This demand results in competition. - Foxes in an area may eat rabbits for lunch. A rabbit population is low and the fox population is high, competition for food among foxes increases. | • | Competition among members of the same | |---|--| | | species is called intraspecific competition. | - Foxes in an area may also compete with wolves and coyotes for rabbits. - Competition between species is called interspecific competition. - All of the herbivores in an area compete for the same food. - Both intraspecific and interspecific competition can limit population growth. ### Density - Different species have different needs for space depending on their size, environment and way of life. - Grizzly bears space themselves out - Penguins live together in large groups - This need for space determines an organism's **population density**. - How many individuals can live in an area at one time. | _ | | |---|--| | | | | | | | - | | | | | | | | | - | | | | | | | | | - | | | | | | | | | - | | | | | | | | | - | _ | | | | | | | | | _ | | | | | | | | | _ | | | | | | | | | _ | | | | | | | | | - | | | | | | | | | - | | | | | | | | | - | _ | | | | | | | | | _ | | | | | | | | | _ | | | | | | | | | _ | | | | | | | | | - | | | | | | | | | - | | | | | | | | | - | | | | | | | |